skip to main content


Search for: All records

Creators/Authors contains: "Upadhyay, Navnidhi K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Memristor devices have been extensively studied as one of the most promising technologies for next-generation non-volatile memory. However, for the memristor devices to have a real technological impact, they must be densely packed in a large crossbar array (CBA) exceeding Gigabytes in size. Devising a selector device that is CMOS compatible, 3D stackable, and has a high non-linearity (NL) and great endurance is a crucial enabling ingredient to reach this goal. Tunneling based selectors are very promising in these aspects, but the mediocre NL value limits their applications in large passive crossbar arrays. In this work, we demonstrated a trilayer tunneling selector based on the Ge/Pt/TaN 1+x /Ta 2 O 5 /TaN 1+x /Pd layers that could achieve a NL of 3 × 10 5 , which is the highest NL achieved using a tunnel selector so far. The record-high tunneling NL is partially attributed to the bottom electrode's ultra-smoothness (BE) induced by a Ge/Pt layer. We further demonstrated the feasibility of 1S1R (1-selector 1-resistor) integration by vertically integrating a Pd/Ta 2 O 5 /Ru based memristor on top of the proposed selector. 
    more » « less
  2. Abstract

    A neuromorphic computing system may be able to learn and perform a task on its own by interacting with its surroundings. Combining such a chip with complementary metal–oxide–semiconductor (CMOS)‐based processors can potentially solve a variety of problems being faced by today's artificial intelligence (AI) systems. Although various architectures purely based on CMOS are designed to maximize the computing efficiency of AI‐based applications, the most fundamental operations including matrix multiplication and convolution heavily rely on the CMOS‐based multiply–accumulate units which are ultimately limited by the von Neumann bottleneck. Fortunately, many emerging memory devices can naturally perform vector matrix multiplication directly utilizing Ohm's law and Kirchhoff's law when an array of such devices is employed in a cross‐bar architecture. With certain dynamics, these devices can also be used either as synapses or neurons in a neuromorphic computing system. This paper discusses various emerging nanoscale electronic devices that can potentially reshape the computing paradigm in the near future.

     
    more » « less